direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C23×D29, C29⋊C24, C58⋊C23, (C22×C58)⋊3C2, (C2×C58)⋊4C22, SmallGroup(464,50)
Series: Derived ►Chief ►Lower central ►Upper central
C29 — C23×D29 |
Generators and relations for C23×D29
G = < a,b,c,d,e | a2=b2=c2=d29=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1562 in 134 conjugacy classes, 83 normal (5 characteristic)
C1, C2, C2, C22, C22, C23, C23, C24, C29, D29, C58, D58, C2×C58, C22×D29, C22×C58, C23×D29
Quotients: C1, C2, C22, C23, C24, D29, D58, C22×D29, C23×D29
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 141)(11 142)(12 143)(13 144)(14 145)(15 117)(16 118)(17 119)(18 120)(19 121)(20 122)(21 123)(22 124)(23 125)(24 126)(25 127)(26 128)(27 129)(28 130)(29 131)(30 168)(31 169)(32 170)(33 171)(34 172)(35 173)(36 174)(37 146)(38 147)(39 148)(40 149)(41 150)(42 151)(43 152)(44 153)(45 154)(46 155)(47 156)(48 157)(49 158)(50 159)(51 160)(52 161)(53 162)(54 163)(55 164)(56 165)(57 166)(58 167)(59 175)(60 176)(61 177)(62 178)(63 179)(64 180)(65 181)(66 182)(67 183)(68 184)(69 185)(70 186)(71 187)(72 188)(73 189)(74 190)(75 191)(76 192)(77 193)(78 194)(79 195)(80 196)(81 197)(82 198)(83 199)(84 200)(85 201)(86 202)(87 203)(88 221)(89 222)(90 223)(91 224)(92 225)(93 226)(94 227)(95 228)(96 229)(97 230)(98 231)(99 232)(100 204)(101 205)(102 206)(103 207)(104 208)(105 209)(106 210)(107 211)(108 212)(109 213)(110 214)(111 215)(112 216)(113 217)(114 218)(115 219)(116 220)
(1 95)(2 96)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 103)(10 104)(11 105)(12 106)(13 107)(14 108)(15 109)(16 110)(17 111)(18 112)(19 113)(20 114)(21 115)(22 116)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(29 94)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(43 79)(44 80)(45 81)(46 82)(47 83)(48 84)(49 85)(50 86)(51 87)(52 59)(53 60)(54 61)(55 62)(56 63)(57 64)(58 65)(117 213)(118 214)(119 215)(120 216)(121 217)(122 218)(123 219)(124 220)(125 221)(126 222)(127 223)(128 224)(129 225)(130 226)(131 227)(132 228)(133 229)(134 230)(135 231)(136 232)(137 204)(138 205)(139 206)(140 207)(141 208)(142 209)(143 210)(144 211)(145 212)(146 189)(147 190)(148 191)(149 192)(150 193)(151 194)(152 195)(153 196)(154 197)(155 198)(156 199)(157 200)(158 201)(159 202)(160 203)(161 175)(162 176)(163 177)(164 178)(165 179)(166 180)(167 181)(168 182)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 43)(29 44)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 113)(71 114)(72 115)(73 116)(74 88)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(81 95)(82 96)(83 97)(84 98)(85 99)(86 100)(87 101)(117 168)(118 169)(119 170)(120 171)(121 172)(122 173)(123 174)(124 146)(125 147)(126 148)(127 149)(128 150)(129 151)(130 152)(131 153)(132 154)(133 155)(134 156)(135 157)(136 158)(137 159)(138 160)(139 161)(140 162)(141 163)(142 164)(143 165)(144 166)(145 167)(175 206)(176 207)(177 208)(178 209)(179 210)(180 211)(181 212)(182 213)(183 214)(184 215)(185 216)(186 217)(187 218)(188 219)(189 220)(190 221)(191 222)(192 223)(193 224)(194 225)(195 226)(196 227)(197 228)(198 229)(199 230)(200 231)(201 232)(202 204)(203 205)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)(117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145)(146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174)(175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203)(204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232)
(1 153)(2 152)(3 151)(4 150)(5 149)(6 148)(7 147)(8 146)(9 174)(10 173)(11 172)(12 171)(13 170)(14 169)(15 168)(16 167)(17 166)(18 165)(19 164)(20 163)(21 162)(22 161)(23 160)(24 159)(25 158)(26 157)(27 156)(28 155)(29 154)(30 117)(31 145)(32 144)(33 143)(34 142)(35 141)(36 140)(37 139)(38 138)(39 137)(40 136)(41 135)(42 134)(43 133)(44 132)(45 131)(46 130)(47 129)(48 128)(49 127)(50 126)(51 125)(52 124)(53 123)(54 122)(55 121)(56 120)(57 119)(58 118)(59 220)(60 219)(61 218)(62 217)(63 216)(64 215)(65 214)(66 213)(67 212)(68 211)(69 210)(70 209)(71 208)(72 207)(73 206)(74 205)(75 204)(76 232)(77 231)(78 230)(79 229)(80 228)(81 227)(82 226)(83 225)(84 224)(85 223)(86 222)(87 221)(88 203)(89 202)(90 201)(91 200)(92 199)(93 198)(94 197)(95 196)(96 195)(97 194)(98 193)(99 192)(100 191)(101 190)(102 189)(103 188)(104 187)(105 186)(106 185)(107 184)(108 183)(109 182)(110 181)(111 180)(112 179)(113 178)(114 177)(115 176)(116 175)
G:=sub<Sym(232)| (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,117)(16,118)(17,119)(18,120)(19,121)(20,122)(21,123)(22,124)(23,125)(24,126)(25,127)(26,128)(27,129)(28,130)(29,131)(30,168)(31,169)(32,170)(33,171)(34,172)(35,173)(36,174)(37,146)(38,147)(39,148)(40,149)(41,150)(42,151)(43,152)(44,153)(45,154)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,161)(53,162)(54,163)(55,164)(56,165)(57,166)(58,167)(59,175)(60,176)(61,177)(62,178)(63,179)(64,180)(65,181)(66,182)(67,183)(68,184)(69,185)(70,186)(71,187)(72,188)(73,189)(74,190)(75,191)(76,192)(77,193)(78,194)(79,195)(80,196)(81,197)(82,198)(83,199)(84,200)(85,201)(86,202)(87,203)(88,221)(89,222)(90,223)(91,224)(92,225)(93,226)(94,227)(95,228)(96,229)(97,230)(98,231)(99,232)(100,204)(101,205)(102,206)(103,207)(104,208)(105,209)(106,210)(107,211)(108,212)(109,213)(110,214)(111,215)(112,216)(113,217)(114,218)(115,219)(116,220), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(49,85)(50,86)(51,87)(52,59)(53,60)(54,61)(55,62)(56,63)(57,64)(58,65)(117,213)(118,214)(119,215)(120,216)(121,217)(122,218)(123,219)(124,220)(125,221)(126,222)(127,223)(128,224)(129,225)(130,226)(131,227)(132,228)(133,229)(134,230)(135,231)(136,232)(137,204)(138,205)(139,206)(140,207)(141,208)(142,209)(143,210)(144,211)(145,212)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,197)(155,198)(156,199)(157,200)(158,201)(159,202)(160,203)(161,175)(162,176)(163,177)(164,178)(165,179)(166,180)(167,181)(168,182)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(29,44)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,101)(117,168)(118,169)(119,170)(120,171)(121,172)(122,173)(123,174)(124,146)(125,147)(126,148)(127,149)(128,150)(129,151)(130,152)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(175,206)(176,207)(177,208)(178,209)(179,210)(180,211)(181,212)(182,213)(183,214)(184,215)(185,216)(186,217)(187,218)(188,219)(189,220)(190,221)(191,222)(192,223)(193,224)(194,225)(195,226)(196,227)(197,228)(198,229)(199,230)(200,231)(201,232)(202,204)(203,205), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)(117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145)(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174)(175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203)(204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232), (1,153)(2,152)(3,151)(4,150)(5,149)(6,148)(7,147)(8,146)(9,174)(10,173)(11,172)(12,171)(13,170)(14,169)(15,168)(16,167)(17,166)(18,165)(19,164)(20,163)(21,162)(22,161)(23,160)(24,159)(25,158)(26,157)(27,156)(28,155)(29,154)(30,117)(31,145)(32,144)(33,143)(34,142)(35,141)(36,140)(37,139)(38,138)(39,137)(40,136)(41,135)(42,134)(43,133)(44,132)(45,131)(46,130)(47,129)(48,128)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,120)(57,119)(58,118)(59,220)(60,219)(61,218)(62,217)(63,216)(64,215)(65,214)(66,213)(67,212)(68,211)(69,210)(70,209)(71,208)(72,207)(73,206)(74,205)(75,204)(76,232)(77,231)(78,230)(79,229)(80,228)(81,227)(82,226)(83,225)(84,224)(85,223)(86,222)(87,221)(88,203)(89,202)(90,201)(91,200)(92,199)(93,198)(94,197)(95,196)(96,195)(97,194)(98,193)(99,192)(100,191)(101,190)(102,189)(103,188)(104,187)(105,186)(106,185)(107,184)(108,183)(109,182)(110,181)(111,180)(112,179)(113,178)(114,177)(115,176)(116,175)>;
G:=Group( (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,117)(16,118)(17,119)(18,120)(19,121)(20,122)(21,123)(22,124)(23,125)(24,126)(25,127)(26,128)(27,129)(28,130)(29,131)(30,168)(31,169)(32,170)(33,171)(34,172)(35,173)(36,174)(37,146)(38,147)(39,148)(40,149)(41,150)(42,151)(43,152)(44,153)(45,154)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,161)(53,162)(54,163)(55,164)(56,165)(57,166)(58,167)(59,175)(60,176)(61,177)(62,178)(63,179)(64,180)(65,181)(66,182)(67,183)(68,184)(69,185)(70,186)(71,187)(72,188)(73,189)(74,190)(75,191)(76,192)(77,193)(78,194)(79,195)(80,196)(81,197)(82,198)(83,199)(84,200)(85,201)(86,202)(87,203)(88,221)(89,222)(90,223)(91,224)(92,225)(93,226)(94,227)(95,228)(96,229)(97,230)(98,231)(99,232)(100,204)(101,205)(102,206)(103,207)(104,208)(105,209)(106,210)(107,211)(108,212)(109,213)(110,214)(111,215)(112,216)(113,217)(114,218)(115,219)(116,220), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(49,85)(50,86)(51,87)(52,59)(53,60)(54,61)(55,62)(56,63)(57,64)(58,65)(117,213)(118,214)(119,215)(120,216)(121,217)(122,218)(123,219)(124,220)(125,221)(126,222)(127,223)(128,224)(129,225)(130,226)(131,227)(132,228)(133,229)(134,230)(135,231)(136,232)(137,204)(138,205)(139,206)(140,207)(141,208)(142,209)(143,210)(144,211)(145,212)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,197)(155,198)(156,199)(157,200)(158,201)(159,202)(160,203)(161,175)(162,176)(163,177)(164,178)(165,179)(166,180)(167,181)(168,182)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(29,44)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,101)(117,168)(118,169)(119,170)(120,171)(121,172)(122,173)(123,174)(124,146)(125,147)(126,148)(127,149)(128,150)(129,151)(130,152)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(175,206)(176,207)(177,208)(178,209)(179,210)(180,211)(181,212)(182,213)(183,214)(184,215)(185,216)(186,217)(187,218)(188,219)(189,220)(190,221)(191,222)(192,223)(193,224)(194,225)(195,226)(196,227)(197,228)(198,229)(199,230)(200,231)(201,232)(202,204)(203,205), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)(117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145)(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174)(175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203)(204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232), (1,153)(2,152)(3,151)(4,150)(5,149)(6,148)(7,147)(8,146)(9,174)(10,173)(11,172)(12,171)(13,170)(14,169)(15,168)(16,167)(17,166)(18,165)(19,164)(20,163)(21,162)(22,161)(23,160)(24,159)(25,158)(26,157)(27,156)(28,155)(29,154)(30,117)(31,145)(32,144)(33,143)(34,142)(35,141)(36,140)(37,139)(38,138)(39,137)(40,136)(41,135)(42,134)(43,133)(44,132)(45,131)(46,130)(47,129)(48,128)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,120)(57,119)(58,118)(59,220)(60,219)(61,218)(62,217)(63,216)(64,215)(65,214)(66,213)(67,212)(68,211)(69,210)(70,209)(71,208)(72,207)(73,206)(74,205)(75,204)(76,232)(77,231)(78,230)(79,229)(80,228)(81,227)(82,226)(83,225)(84,224)(85,223)(86,222)(87,221)(88,203)(89,202)(90,201)(91,200)(92,199)(93,198)(94,197)(95,196)(96,195)(97,194)(98,193)(99,192)(100,191)(101,190)(102,189)(103,188)(104,187)(105,186)(106,185)(107,184)(108,183)(109,182)(110,181)(111,180)(112,179)(113,178)(114,177)(115,176)(116,175) );
G=PermutationGroup([[(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,141),(11,142),(12,143),(13,144),(14,145),(15,117),(16,118),(17,119),(18,120),(19,121),(20,122),(21,123),(22,124),(23,125),(24,126),(25,127),(26,128),(27,129),(28,130),(29,131),(30,168),(31,169),(32,170),(33,171),(34,172),(35,173),(36,174),(37,146),(38,147),(39,148),(40,149),(41,150),(42,151),(43,152),(44,153),(45,154),(46,155),(47,156),(48,157),(49,158),(50,159),(51,160),(52,161),(53,162),(54,163),(55,164),(56,165),(57,166),(58,167),(59,175),(60,176),(61,177),(62,178),(63,179),(64,180),(65,181),(66,182),(67,183),(68,184),(69,185),(70,186),(71,187),(72,188),(73,189),(74,190),(75,191),(76,192),(77,193),(78,194),(79,195),(80,196),(81,197),(82,198),(83,199),(84,200),(85,201),(86,202),(87,203),(88,221),(89,222),(90,223),(91,224),(92,225),(93,226),(94,227),(95,228),(96,229),(97,230),(98,231),(99,232),(100,204),(101,205),(102,206),(103,207),(104,208),(105,209),(106,210),(107,211),(108,212),(109,213),(110,214),(111,215),(112,216),(113,217),(114,218),(115,219),(116,220)], [(1,95),(2,96),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,103),(10,104),(11,105),(12,106),(13,107),(14,108),(15,109),(16,110),(17,111),(18,112),(19,113),(20,114),(21,115),(22,116),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(29,94),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(43,79),(44,80),(45,81),(46,82),(47,83),(48,84),(49,85),(50,86),(51,87),(52,59),(53,60),(54,61),(55,62),(56,63),(57,64),(58,65),(117,213),(118,214),(119,215),(120,216),(121,217),(122,218),(123,219),(124,220),(125,221),(126,222),(127,223),(128,224),(129,225),(130,226),(131,227),(132,228),(133,229),(134,230),(135,231),(136,232),(137,204),(138,205),(139,206),(140,207),(141,208),(142,209),(143,210),(144,211),(145,212),(146,189),(147,190),(148,191),(149,192),(150,193),(151,194),(152,195),(153,196),(154,197),(155,198),(156,199),(157,200),(158,201),(159,202),(160,203),(161,175),(162,176),(163,177),(164,178),(165,179),(166,180),(167,181),(168,182),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,43),(29,44),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,113),(71,114),(72,115),(73,116),(74,88),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(81,95),(82,96),(83,97),(84,98),(85,99),(86,100),(87,101),(117,168),(118,169),(119,170),(120,171),(121,172),(122,173),(123,174),(124,146),(125,147),(126,148),(127,149),(128,150),(129,151),(130,152),(131,153),(132,154),(133,155),(134,156),(135,157),(136,158),(137,159),(138,160),(139,161),(140,162),(141,163),(142,164),(143,165),(144,166),(145,167),(175,206),(176,207),(177,208),(178,209),(179,210),(180,211),(181,212),(182,213),(183,214),(184,215),(185,216),(186,217),(187,218),(188,219),(189,220),(190,221),(191,222),(192,223),(193,224),(194,225),(195,226),(196,227),(197,228),(198,229),(199,230),(200,231),(201,232),(202,204),(203,205)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116),(117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145),(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174),(175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203),(204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232)], [(1,153),(2,152),(3,151),(4,150),(5,149),(6,148),(7,147),(8,146),(9,174),(10,173),(11,172),(12,171),(13,170),(14,169),(15,168),(16,167),(17,166),(18,165),(19,164),(20,163),(21,162),(22,161),(23,160),(24,159),(25,158),(26,157),(27,156),(28,155),(29,154),(30,117),(31,145),(32,144),(33,143),(34,142),(35,141),(36,140),(37,139),(38,138),(39,137),(40,136),(41,135),(42,134),(43,133),(44,132),(45,131),(46,130),(47,129),(48,128),(49,127),(50,126),(51,125),(52,124),(53,123),(54,122),(55,121),(56,120),(57,119),(58,118),(59,220),(60,219),(61,218),(62,217),(63,216),(64,215),(65,214),(66,213),(67,212),(68,211),(69,210),(70,209),(71,208),(72,207),(73,206),(74,205),(75,204),(76,232),(77,231),(78,230),(79,229),(80,228),(81,227),(82,226),(83,225),(84,224),(85,223),(86,222),(87,221),(88,203),(89,202),(90,201),(91,200),(92,199),(93,198),(94,197),(95,196),(96,195),(97,194),(98,193),(99,192),(100,191),(101,190),(102,189),(103,188),(104,187),(105,186),(106,185),(107,184),(108,183),(109,182),(110,181),(111,180),(112,179),(113,178),(114,177),(115,176),(116,175)]])
128 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 29A | ··· | 29N | 58A | ··· | 58CT |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 29 | ··· | 29 | 58 | ··· | 58 |
size | 1 | 1 | ··· | 1 | 29 | ··· | 29 | 2 | ··· | 2 | 2 | ··· | 2 |
128 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D29 | D58 |
kernel | C23×D29 | C22×D29 | C22×C58 | C23 | C22 |
# reps | 1 | 14 | 1 | 14 | 98 |
Matrix representation of C23×D29 ►in GL4(𝔽59) generated by
1 | 0 | 0 | 0 |
0 | 58 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 58 | 0 |
0 | 0 | 0 | 58 |
58 | 0 | 0 | 0 |
0 | 58 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 36 | 1 |
0 | 0 | 29 | 50 |
1 | 0 | 0 | 0 |
0 | 58 | 0 | 0 |
0 | 0 | 50 | 58 |
0 | 0 | 21 | 9 |
G:=sub<GL(4,GF(59))| [1,0,0,0,0,58,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,58,0,0,0,0,58],[58,0,0,0,0,58,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,36,29,0,0,1,50],[1,0,0,0,0,58,0,0,0,0,50,21,0,0,58,9] >;
C23×D29 in GAP, Magma, Sage, TeX
C_2^3\times D_{29}
% in TeX
G:=Group("C2^3xD29");
// GroupNames label
G:=SmallGroup(464,50);
// by ID
G=gap.SmallGroup(464,50);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-29,11204]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^29=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations